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Abstract 

RT-PCR LOCALIZATION OF PHOSPHOENOLPYRUVATE CARBOXYKINASE 
(PEPCK) MRNA IN RAT PROXIMAL TUBULE SEGMENTS DURING AMMONIUM 
CHLORIDE ACIDOSIS 

By Matthew R. Craig, Bachelor of Arts, University of Virginia, 1992 

A thesis submitted in partial fulfillment of the requirements for the degree of Masters of 
Science at the Medical College of Virginia, Virginia Commonwealth University, 
Richmond, Virginia, December 1998 

Director: Anton C. Schoolwerth, M.D., Professor, Department of Internal Medicine and 
Physiology 

In metabolic acidosis, the early increase in PEPCK mRNA and enzyme protein 

content contributes to the accelerated rates of anunonium and glucose formation. In situ 

hybridization demonstrated that expression of PEPCK was confined to medullary rays of 

rat kidney cortex in controls and spread throughout the cortex 10 hours following N�Cl 

feeding (Am.JPhysiol., 267: F400, 1994). To identify the specific nephron segments 

expressing PEPCK in control and acidotic conditions, the mRNA for PEPCK along the 

nephron of the rat kidney was localized using the technique of reverse transcription and 

polymerase chain reaction (RT-PCR) in individual microdissected St, S2 and S3 segments 

of the rat proximal tubule. Two-millimeter segments of tubule were permeabilized, the 

mRNA reverse transcribed using oligo-dT as a downstream primer and the eDNA 
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product amplified by PCR (35 cycles). Primers specific for �-actin were used to confirm 

transfer of tubule, and only tubules positive for �-actin were amplified with primers 

specific for PEPCK. Both primers were designed to span at least one intron to avoid 

amplification of genomic DNA. The PCR products were detected using agarose gel 

electrophoresis and ethidium bromide staining. Verification of PCR product was 

performed by restriction enzyme digestion. 

Under control conditions, the number of tubules expressing PEPCK mRNA as 

detected by RT-PCR was greatest in the S3 segment, moderate in the S2 segment, and 

least in the S1 segment of the proximal tubule. Ten hours after gavage feeding of 20-

mmol/kg bodyweight NH4Cl, strong signals for PEPCK were detected in all three 

proximal tubule segments. These data demonstrate the ability of the rat kidney cortex to 

modulate the expression of PEPCK mRNA along the proximal tubule under 

physiological conditions, and to increase expression of PEPCK mRNA during metabolic 

acidosis by the recruitment of additional cells in the proximal nephron. 
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Introduction 

The kidney is the only organ other than the liver capable of significant glucose 

synthesis. The formation of glucose from non-carbohydrate precursors is known as 

gluconeogenesis. These non-carbohydrate precursors include lactate, pyruvate, glycerol 

and some amino acids.23 The gluconeogenic amino acids glutamine and alanine are 

quantitatively the most important gluconeogenic amino acids in vivo. 14 Apart from the 

liver, the kidney is the only organ which readily synthesizes glucose from lactate, 

pyruvate and amino acids.47 Elucidation of the gluconeogenic nature of the kidney cortex 

was first described by Benoy and Elliott in 193i0 and was corroborated by H. A. Krebs, 

eta! in 1963.48 

The ability of the kidney to synthesize glucose exceeds that of the liver on a per 

weight basis46, and increases dramatically during metabolic perturbations such as 

potassium depletion,26 acidosis,2'41•52 starvation8•33 and a low carbohydrate diet.48 During 

normal homeostasis, the kidney can provide up to twenty percent of the total body 

glucose;23 and under certain conditions the contribution by the kidney to total body 

glucose can increase to as much as forty-five to fifty percent.42•75 The ultimate end 

product of renal gluconeogenesis is thought to be glucose instead of glycogen, as very 

little glycogen is stored by the kidney.48 
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The gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) 

catalyzes the first committed step of gluconeogenesis, and is described as the rate-

limiting enzyme of gluconeogenesis. 33' 
79 PEPCK, first described in 1954 by Utter and 

Kurahashi, catalyzes the conversion of oxaloacetate to phosphoenolpyruvate (PEP) 

[Equation 1].80 The high-energy intermediate PEP can then form either glucose through 

gluconeogenesis, or be transformed into pyruvate for oxidation in the mitochondria. The 

latter pathway most likely occurs when glucose availability is high and free fatty acid 

levels are low. 17 

Oxaloacetate + GTP <=> Phosphoenolpyruvate + GDP + C02 
Equation 1 

The enhancement of renal gluconeogenesis was shown to occur between 

oxaloacetate and phosphoenolpyruvate by measuring intermediates of gluconeogenesis 

during metabolic acidosis in the rat.1 G.A.O Alleyne concluded in 1968 that the activity 

of PEPCK increased in the kidneys of acidotic rats, and served to remove a.-

ketoglutarate, a by-product of glutamine and glutamate breakdown. The conversion of 

PEP to glucose from the metabolic precursor a.-ketoglutarate is considered the principal 

end product of renal a.-ketoglutarate metabolism, as the oxygen uptake by the kidney is 

much less than anticipated if complete oxidation of PEP via pyruvate were to occur.26 a.-

Ketoglutarate is produced by the kidney from the metabolism of glutamine when 

glutamine is deaminated and then deamidated.76 The ammonium produced is excreted by 

the kidney as ammonium ions, resulting in the excretion of excess protons. This process 

is known as ammoniagenesis, and increases during metabolic acidosis. It was once 
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thought that PEPCK acted to control ammoniagenesis by modulating the level of a.-

ketoglutarate via oxaloacetate, but this theory has smce been abandoned. 

Ammoniagenesis has been shown to occur in the absence of gluconeogenesis, using a 

specific inhibitor of PEPCK.
9

•11•18 PEPCK, therefore, is not regulatory for ammonium 

formation by the kidney, but influences glutamine metabolism by affecting oxaloacetate 

levels. Renal gluconeogenesis is not rate-limiting for the production of ammonium by 

the kidney, and ammonium production occurs before any increase in renal glucose 

production.65 The increase in renal gluconeogenesis has been suggested to be a 

consequence rather than a cause of glutamine hydrolysis, and serves as a means to 

dispose of the carbon skeleton of glutamine.76 Renal gluconeogenesis is therefore 

considered to be a "salvage reaction" for the carbon skeleton of glutamine.47 

The kidney acts to maintain acid-base homeostasis by filtering and reabsorbing 

bicarbonate. When bicarbonate is low, the kidney synthesizes "new" bicarbonate by 

metabolizing glutamine with the concomitant production of ammonium, which is 

excreted in the urine. During acidosis, plasma bicarbonate concentration is low, and 

glutamine utilization by the kidney is increased.77 Glutamine serves as a "sink" for the 

disposal of excess hydrogen ions, providing both a source of urinary ammonium and a 

carbon source for subsequent metabolism of the carboxylate anions. The NH4 + produced 

is excreted in the urine to avoid the bicarbonate consuming process of urea formation by 

the liver. The carboxylate anions produced during the metabolism of glutamine are 

converted to the neutral end products glucose or C02, with concomitant production of 
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bicarbonate.30 The net effect of these mechanisms serves to increase plasma [HC03-] and 

restore blood pH. 

PEPCK has been demonstrated to be present with high specific activity in liver, 

kidney cortex, and white adipose tissue, with lower activities in lung, jejunum and 

brain.32 The intracellular location of PEPCK exhibits a wide variation among species. 

PEPCK is present in both a mitochondrial and cytosolic form, but differs in its 

subcellular distribution. In almost every species studied, with the exception of the 

chicken, the subcellular distribution is consistent throughout all tissues.34 In the hamster, 

rat and mouse, hepatic PEPCK enzyme activity exists mainly in the cytosol (90% 

cytosolic/10% mitochondrial).31 In human, guinea pig, sheep and cow, subcellular 

location is almost equivalent ( �40% cytosolic/�60% mitochondrial), and in rabbit and 

pigeon, the enzyme IS almost entirely mitochondrial ( �5% cytosolic/�95% 

mitochondrial).31•32 In the chicken, hepatic PEPCK is predominantly mitochondrial (�5% 

cytosolic/�95% mitochondrial). Renal PEPCK abundance in the chicken is also mostly 

mitochondrial, but to a lesser degree than that of the liver (�20% cytosolic/�80% 

mitochondrial). 81 •20 

Hepatic PEPCK enzymes from the cytosol and mitochondria of the rat have been 

demonstrated to exist as immunologically distinct enzymes, in that the antibody to one 

enzyme does not cross react with the counterpart enzyme.34 However, the PEPCK 

enzymes present in the cytosol of rat adipocytes and in the cytosol of rat hepatocytes 

have been established to be immunologically identical.6 Additionally, using the antibody 

for cytosolic rat liver PEPCK, cytosolic rat renal PEPCK was found to be 
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immunologically indistinguishable.53 The differences in the subcellular localization of 

the enzyme and its response to metabolic perturbations in different organisms have led to 

the generalization that the mitochondrial enzyme is constitutively expressed, while the 

cytosolic form is inducible and is regulated according to the metabolic needs of the 

tissue.
32 

The regulation of PEPCK varies with modulator and tissue type. The activity of 

PEPCK can be altered in vivo by administration of glucagon, norepinephrine, ACTH 

glucocorticoids, thyroxine and insulin. The response to these mediators is tissue-specific, 

as glucocorticoids increase the amount of the enzyme in the kidney, and decrease the 

amount of the enzyme in adipose tissue?4 
Glucocorticoid administration and starvation 

both lead to an increase in the activity of renal PEPCK. 33•66 Insulin increases the activity 

of the enzyme in the liver, but has no effect on the renal enzyme.79 Rats fed high protein 

diets demonstrated higher renal PEPCK activity than rats fed low protein diets, and this 

increase was attenuated by sodium bicarbonate administration.
73 PEPCK in the liver and 

kidney of the rat also differ in their response to metabolic acidosis. Following NH4Cl 

feeding, renal PEPCK increased while hepatic PEPCK was unchanged,4'
74 

or even 

decreased.40 The stimulation of renal PEPCK after NH4Cl feeding occurs in 

thyroidectomized, parathyroidectomized, hypophysectomized and adrenalectomized 

animals.37 
Additionally, adrenalectomy does not effect the renal increase of PEPCK due 

to fasting?4•27 

The cytosolic PEPCK enzyme is induced in rat renal proximal tubule cells in 

response to metabolic acidosis.16•37 Under similar conditions, however, the mitochondrial 
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enzyme is constitutively expressed.51•75 Increased synthesis of PEPCK enzyme during 

metabolic acidosis is the primary factor determining the increased renal level of the 

enzyme.63 During starvation, which results in metabolic acidosis, the high rate ofPEPCK 

synthesis was reduced after sodium bicarbonate feeding.37 

In the isolated perfused kidney, Bowman demonstrated that more glucose was 

produced from lactate at a perfusate pH of 7.23 than from lactate at a perfusate pH of 

7.45.12 Glucose production from gluconeogenic precursors, pyruvate, glutamine and 

other amino acids, was greater at an acidic perfusate pH than at a basic perfusate pH. 

These data demonstrate the dependence of perfusate pH on renal gluconeogenesis by the 

rat tubule, and that glucose production by the kidney is increased by an acidic tubular pH. 

Renal gluconeogenesis itself is exclusive to the cortex, and is limited to the proximal 

tubule of the nephron.16•28 Using microdissected nephrons, PEPCK enzyme activity is 

highest in the proximal tubule?8•29 

In a study by Schoolwerth, et al, in situ hybridization was used to determine that 

PEPCK mRNA was localized to the medullary rays of control kidneys. Ten hours after 

gavage feeding of 20 mmol NH4Cllkg bodyweight, the expression of PEPCK mRNA 

spread throughout the entire cortex. Using a dot blot assay, Schoolwerth and colleagues 

demonstrated that PEPCK mRNA expression peaked 16-fold after ammonium chloride 

ingestion, and returned to control levels after thirty hours. This study by Schoolwerth, et 

al was the first to demonstrate a change in the distribution pattern of PEPCK mRNA in 

the kidney cortex.74 Using the techniques of microdissection, reverse transcription and 

the polymerase chain reaction, the present study will attempt to provide an enhanced 
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illustration of the localization of PEPCK mRNA expression along the rat proximal 

tubule. 

Polymerase Chain Reaction 

The polymerase chain reaction, or PCR, is a powerful in vitro technique for the 

enzymatic amplification of a region of DNA between two portions of a known DNA 

sequence. The PCR process was conceived by Kary Mullis during a moonlit drive up the 

coast of Califomia58 and first appeared in print in December of 1985.69 In 1989, PCR 

was heralded by Science as a "major scientific development," and Taq DNA polymerase 

was selected as the molecule of the year.44 Dr. Mullis received the Nobel Prize for 

Chemistry in 1993. 

A complete PCR reaction contains all the necessary components for DNA 

amplification: the DNA target template of interest, a molar excess of each adenine, 

cytosine, guanine and thymine deoxynucleotide base, a quantitatively large amount of the 

specific oligonucleotide primers, and a thermostable DNA polymerase. Most commonly, 

the thermostable enzyme Thermus aquaticus, or Taq DNA polymerase, is used for 

amplification, although other DNA polymerases are available. Because Taq DNA 

polymerase is generally insensitive to the 95°C denaturation step, it does not need to be 

replenished with each cycle.68 

Taq DNA polymerase is stable at 95°C for up to 40 minutes and has an optimal 

extension rate at a reaction temperature of 70-80°C, which makes it an ideal enzyme for 

PCR amplification. Taq can add mononucleotides onto the end of a growing DNA chain 

at the rate of 50 to 60 nucleotides per second. Additionally, it has an inherent 5'�3' 
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exonuclease activity, which removes nucleotides from the template strand ahead of the 

growing strand. These combined factors make Taq DNA polymerase a very versatile and 

effective enzyme for use in PCR.61 

The PCR process is initiated when the double-stranded DNA target is first 

denatured or "unzipped" by heating to 90-95°C. The specific oligonucleotide primers 

hybridize to the complementary regions of the DNA target sequence after cooling to 55-

60°C. The primer-dependent DNA polymerase then catalyzes the elongation of the 

oligonucleotide primer at no C, using the complementary DNA strand as a template and 

the free deoxynucleotides as building blocks. The single-stranded primers are generally 

20 to 30 nucleotides in length, and flank a region of DNA anywhere from 100 to 5000 or 

more bases in length. The amplification reaction proceeds through many cycles of 

template denaturation, oligonucleotide primer annealing and extension by the DNA 

polymerase. At the end of each cycle, a new double-stranded DNA molecule exists, 

which can serve as a target for the next round of amplification. The amount of DNA 

target template has theoretically doubled, and accumulates exponentially with each cycle. 

Twenty cycles of PCR can yield a million-fold amplification of target DNA within two 

hours (1020 
= 1,048,576).22 

The first round of denaturation and extension of the DNA template results in 

double stranded DNA of indeterminate length, but contains the DNA region of interest. 

The DNA polymerase will continue to add bases onto the growing strands until it falls off 

or reaches the end of the template. The second cycle of amplification also leads to 

products of various lengths. By the third cycle, however, the amplification products, 
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which are defined by the distance between the two primers, begin to accumulate, and are 

amplified exponentially. The longer products are also produced, but are only amplified 

linearly. 

The simple beauty of PCR is that it allows for the amplification and detection of a 

small amount of nucleic acids. This small amount of nucleic acids could be due to a low 

number of target copies within a large population of nucleic acid molecules, or a small 

amount of cellular starting material. 59 With the addition of reverse transcription, single 

stranded eDNA copies of cellular mRNA can be amplified. Reverse transcription PCR 

(RT-PCR) provides extraordinary sensitivity in detecting rare copies of nucleic acid 

sequences in large samples or in samples with very small amounts of starting material. 

This latter trait is exploited in the current study, as microdissected rat kidney tubules 

were examined for P-actin and PEPCK mRNA. To attempt to preserve as much cellular 

mRNA as possible, the tubule cells were permeabilized and the mRNA examined 

directly, without extraction or purification. This avoided having to extract mRNA from 

very small amounts of tissue, where product loss would be most probable. This 

technique of microdissection, isolation and direct lysis followed by RT-PCR was 

introduced by Moriyama et a! in 1990 and has been used successfully for many renal 

tubular and vascular studies?1•45•57•78 
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Rationale for Thesis 

The kidney synthesizes glucose and increases glucose production during 

metabolic acidosis. This gluconeogenic increase occurs in kidney cortex and is 

concomitant with an increase in PEPCK mRNA throughout the entire cortex. In situ 

hybridization data by Schoolwerth, et al suggest that PEPCK mRNA is localized to the S3 

segment of proximal tubule under control conditions/4 but are insufficient to identify the 

precise segment in which PEPCK mRNA is expressed. The same study by Schoolwerth, 

et al described PEPCK mRNA expression as having expanded to include the entire cortex 

10 hours following NH4Cl administration, which suggests that all segments of the 

proximal tubule are expressing PEPCK mRNA. This proposition needs further 

refinement by microdissection to augment its validity. The present studies were therefore 

performed to resolve the localization of PEPCK mRNA in the rat proximal tubule during 

control and acidotic conditions. Rats were studied ten hours after gavage feeding of 20 

mmol N�Cl/kg bodyweight; this causes acute metabolic acidosis and results in a 16-fold 

increase in PEPCK mRNA in the rat kidney cortex.74 The S1, S2 and S3 segments of the 

rat proximal tubule were isolated and examined for PEPCK mRNA expression during 

acidosis and physiological control conditions. Using RT-PCR, microdissected rat 

nephron segments were analyzed for the presence or absence of P-actin mRNA, the gene 

for a constitutive structural protein. A positive result with P-actin should confirm proper 

10 
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transfer and permeabilization of tubule, in addition to successful reverse transcription of 

the mRNA population present in the sample. Only �-actin positive tubules were analyzed 

for the presence or absence of PEPCK mRNA by RT-PCR 

Under control conditions it was predicted that PEPCK mRNA expression would 

be highest in the S3 segment of the proximal tubule, as suggested by the in situ 

hybridization data of Schoolwerth, et a/.74 Following metabolic acidosis, PEPCK mRNA 

expression was present throughout the cortex, and it was anticipated to be detected by 

R T-PCR in all segments of the proximal nephron. These studies attempt to demonstrate 

the localization in the proximal tubule of PEPCK mRNA under normal conditions and 

following an acid insult. By examining the PEPCK mRNA expression in sub-segments 

of the proximal tubule, these studies endeavor to substantiate that during acute metabolic 

acidosis there is a recruitment of proximal tubule cells which were not previously 

expressing PEPCK mRNA. 
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Materials 

Male Sprague Dawley rats were procured either from Harlan Sprague Dawley, 

Indianapolis, Indiana or from the National Cancer Institute, Bethesda, Maryland. 

Xylazine, Ketamine and Sodium Pentobarbital were obtained from the Animal Resource 

Facility of the Medical College of Virginia, Richmond, Virginia. Vanadyl 

Ribonucleoside Inhibitor (VRC) and Dithiothreotol (DTT) were obtained from Gibco 

BRL, Gaithersburg, Maryland. Collagenase, Pronase, Bovine Serum Albumin (BSA), 

glycerol, agarose (Standard and Low Melting point) and mineral oil were acquired from 

Sigma Chemical Company, St. Louis, Missouri. Hyaluronidase was obtained from 

Worthington Biochemical Corporation, Freehold, New Jersey. Triton X-100 was 

obtained from Boehringer-Mannheim, Indianapolis, Indiana. Wild M8 stereomicroscope 

was manufactured by Wild Heerbrugg, Ltd., Heerbrugg, Switzerland. Moloney Murine 

Leukemia Virus Reverse Transcriptase (MMLV -RT), Recombinant Ribonucleoside 

Inhibitor (RNasin), Thermus aquaticus DNA Polymerase (Taq DNA Polymerase), Oligo­

(dT)15, 100bp DNA ladder and deoxynucleotide triphosphates {dATP, dCTP, dGTP, and 

dTTP (dNTPs)} were obtained from Promega, Madison, Wisconsin. PCR primers were 

synthesized by Operon Technologies, Alameda, California. Xylene cyanol FF and 

bromophenol blue were obtained from Bio-Rad, Hercules, California. QIAquick Gel 

Extraction kit was obtained from Qiagen, Inc. Chatsworth, California. Restriction 

12 
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enzymes were obtained from New England Biolabs, Beverly, Massachusetts. PCR 

Thermocycler, TempCycler®, supplied by Coy Labs, Ann Arbor, Michigan. The DNA 

analysis computer software used was the Wisconsin Package Version 9.0, Genetics 

Computer Group (GCG), Madison, Wisconsin. All chemicals and materials were 

molecular biology grade and were either purchased as, or treated to become, RNase free. 
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Methods 

Animals 

Male Sprague Dawley rats, 150-200g, were housed in the Animal Resource 

facility of the Medical College of Virginia, Virginia Commonwealth University after 

obtaining them from the vendor. Control and acidotic animals were allowed free access 

to commercial rat food and water. Acute metabolic acidosis was induced by a single 

gavage feeding of 20 mmol NH4Cl/kg bodyweight.7
4 

Acidotic animals were 

subsequently sacrificed ten hours following feeding NH4Cl. Control animals resided in 

similar cages without manipulation. The peak of PEPCK mRNA expression was 

previously demonstrated by Schoolwerth, et al to occur ten hours subsequent to gavage 

feeding of 20 mmol NH4Cllkg bodyweight. 7
4 

This outcome provided the ten hour focal 

point for the present investigation. 

Blood analysis 

To investigate the extent of acidosis ten hours after ammonium chloride feeding, 

arterial blood samples (0.3mL) were taken from a small group of ammonium chloride fed 

and control rats. Ten hours after ammonium chloride feeding, rats were anesthetized 

according to bodyweight with an intramuscular injection of xylazine and ketamine. The 

abdominal aorta was exposed and approximately 0.3mL of arterial blood was collected in 

14 
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a heparinized, air-tight syringe. The syringe was sealed with a cork and kept on ice until 

analysis. Blood pH and [HC03-) was determined using an automated blood gas analyzer. 

Preparation of rat kidney cortex 

The method of tubule dissection and preparation was similar to previous reports, 

with some modification.21 Rats were anesthetized according to bodyweight with an 

intramuscular injection of xylazine and ketamine, followed by an intraperitoneal injection 

of sodium pentobarbital. After the animal was tranquilized, an abdominal incision was 

made exposing the internal organs. The employed method of tissue preparation was 

adapted from previous reports.21•57 The aorta was ligated above the bifurcation of the 

aorta and additionally between the left and right renal arteries. The aorta was cannulated 

with polyethylene tubing (PE-90) below the left kidney and secured with 3-0 suture silk. 

The left kidney was selectively perfused in vivo initially with ice-cold perfusion solution 

(l ml/l Og bodyweight), followed by a second perfusion of l mlllOg bodyweight of the 

same solution containing collagenase (1 mg/mL ), hyaluronidase (1 OOOU/mL) and bovine 

serum albumin (l mg/mL) warmed to 37°C. The pH 7.4 perfusion solution contained 

135mM NaCl, 5.0mM KCl, l .OmM NazH P04, 3.0mM sodium acetate, 1.2mM NazS04, 

5.5mM glucose, 2.5 CaClz, 1.2mM MgS04 and -S.OmM Hepes, and was suffused with 

100% oxygen. 

After perfusion, the kidney was removed, decapsulated and demedullated. 

Portions of the cortex and outer stripe of the outer medulla were cut into l-2mm cubes. 

These pieces were then transferred into separate 25mL Erlenmeyer flasks containing 8-

12mL of the 3 7°C buffered enzyme solution. The pieces were incubated for 20 minutes 
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at 37° C in a shaking water bath. The digestion solution was bubbled with 100% oxygen 

prior to perfusion and during incubation. Following incubation, the tissue was washed 

once with enzyme-free perfusion solution before being placed in an ice-cold perfusion 

medium containing 10mM Vanadyl Ribonucleoside Complex (VRC), an effective RNase 

inhibitor, and kept on ice until dissection. To remove any particulate matter, the VRC 

solution was refined by low speed centrifugation followed by filtration through a 0.22 ).lm 

syringe filter. 

Dissection of tubules 

Individual 1-2mm proximal tubular segments were isolated using polished, sterile 

No. 5 Dumont forceps and a Wild M8 dissecting microscope in a dissecting dish cooled 

to 4°C with a Peltier cooling element. The dissecting dish was directly illuminated from 

below. Tubular segments were identified using established criteria25•45•49•71•82 and 

measured with a calibrated ocular micrometer. sl and s2 segments of proximal tubule 

were obtained from the cortical pieces and the S3 segments were obtained from the 

medullary rays of the outer stripe of the outer medulla. Any attached blood vessels or 

glomeruli were carefully removed before transfer of tubule. One or two nephron 

segments for a total length of 2mm were transferred with a Drummond pipette to a 

separate dish containing lOmL VRC-free dissection medium. After rinsing the tubule(s) 

in the VRC-free medium, the segment(s) were transferred with a second Drummond 

pipette along with 2)!1 of dissection solution to a thin-wall RT-PCR microcentrifuge tube 

e@ntaining ·Sf'll of lysis buffer (2.5% Triton X-1 00, 1 U/ml RNase inhibitor, 5mM DTT). 
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The samples were kept frozen on dry ice until reverse transcription. The harvest of 

tubules was completed one hour after the end of the digestion of the rat kidney cortex. 

First strand eDNA synthesis (Reverse transcription [RT]) 

To produce a stable eDNA copy of the mRNA present, each sample was heated 

for 10 minutes at 65°C to reduce mRNA secondary structure, quick-chilled on ice and 

centrifuged at 12,000 rpm to collect any condensate. An Eppendorf benchtop 

microcentrifuge was used for this and all subsequent microtube centrifugations. 

Treatment of the samples with DNase to remove genomic DNA proved to be detrimental 

to the survival of the mRNA and was not performed. The permeabilized tubules were 

reverse transcribed using of Moloney Murine Leukemia virus Reverse Transcriptase 

(MMLV-RT) and Oligo-dT as a downstream primer. Each total RNA sample was 

incubated with a molar excess of oligo-dT primer at 65°C for ten minutes before 

transcription to improve the efficiency of the MMLV-RT. Heat denaturing total RNA in 

the presence of RT primer prior to reverse transcription decreases secondary structure of 

the mRNA and enhances specific primer annealing.13 The final concentration of 

reactants was 0.67% Triton X-100, 50mM Tris-HCl (pH 8.3), 75mM KCl, 3.0mM 

MgCh, 10mM DTT, 0.25mM each of dNTP's, O.SflM Oligo-dT and contained 200 units 

of MML V -RT. The total volume of the reaction mixture was 30fll. Controls without 

addition of reverse transcriptase were performed to rule out any possible genomic DNA 

amplification. A water blank was reverse transcribed with each reaction to rule out any 

incidental mRNA contamination. The reaction tubes were incubated for 10 minutes at 

23°C, 60 minutes at 42°C and then 10 minutes at 95°C to stop the reaction by inactivating 
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the enzyme. The samples were maintained at 4°C or stored frozen at -20°C until PCR 

analysis. 

Polymerase Chain Reaction (PCR) 

To confirm transfer and permeabilization of tubule, and reverse transcription of 

the mRNA population, one-third of the prepared eDNA (10!11) was amplified with 

primers specific for �-actin eDNA. �-actin is a constitutive structural protein whose 

expression is unaffected by ammonium chloride feeding.35•36•56 �-actin has been 

previously demonstrated to be present in all nephron segments, and has served as a 

positive control in other published RT-PCR reports.78 The �-actin primer sequence was 

acquired from a previous report. 
45 

The primer pair spanned at least one intron and the 

predominant PCR product was predicted to be 698 base pairs in length. �-actin primer 

sequences and base definitions are listed in Table I. 

�-actin eDNA amplification was performed in a 25 111 final volume in 600 111 

Gene-Amp PCR tubes. The amplification protocol was optimized for magnesium and 

dimethyl sulfoxide (DMSO) concentration by the method of Ausubel, et al. 
5 

The final 

optimized concentration of reactants was 50mM KCl, I OmM Tris-HCl, O.I% Triton X-

IOO, 2.0mM MgCh, 2.0mM each of dNTPs, 0.9% DMSO, 0.5jlM each of �-actin specific 

primers and contained 0.625 units of Thermus aquaticus (Taq) DNA polymerase. For 

each reaction, a "master mix" was made containing all of the PCR ingredients except for 

the eDNA sample, as advocated in the literature. 5° The contents of each reaction tube 

were overlaid with one drop of mineral oil to prevent the evaporation of reactants. A 

water blank (no eDNA added) was utilized to detect any nonspecific contamination 
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present in the reagents or pipettes. The tubes were placed in an automated thermocycler 

and incubated for 3 minutes at 94° before cycling 35 times through a reaction profile of 

94° for 30 seconds (template denaturation), 58° for 30 seconds (primer annealing) and 

no for 45 seconds (primer extension). The tubes were then incubated for 7 minutes at 

no for a final extension and chilled at 4° C until analysis by agarose gel electrophoresis. 

To amplify PEPCK, the remaining reverse transcribed tubule eDNA (20J..d) was 

amplified in the same tube as the reverse transcription reaction using primers specific for 

PEPCK. Only those tubule segments shown to contain �-actin eDNA were amplified 

with primers specific for PEPCK. The primers for PEPCK were previously designed in 

the laboratory. The primer pair spanned at least one intron and the predominant PCR 

product was predicted to be 667 base pairs in length. PEPCK primer sequences and base 

definitions are listed in Table 1. The amplification protocol was optimized for 

magnesium and dimethyl sulfoxide (DMSO) concentration by the method of Ausubel, et 

al. 4 The PCR was performed in a final volume of 60 J..Ll and was optimized to contain 

50mM KCl, 10mM Tris-HCl, 0.1% Triton X-100, 1.5mM MgCb, 2.0mM each of dNTPs, 

0.5J..LM each of PEPCK specific primers and contained 1.5 units of Taq polymerase. For 

each reaction, a "master mix" was made containing all of the PCR ingredients except for 

the eDNA sample. The contents of each reaction tube were overlaid with one drop of 

mineral oil to prevent the evaporation of reactants. A water blank (no eDNA added) was 

utilized to detect any nonspecific contamination present in the reagents or pipettes. The 

PEPCK PCR amplification profile was identical to the �-actin PCR time and temperature 

profile. 
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Oligonucleotides for amplification 

The details of the oligonucleotide primers used for �-actin and PEPCK PCR 

amplification are given in Table I. The sequence of the �-actin primers was chosen from 

a previous report,45 and the PEPCK primer pair sequence was previously determined in 

the laboratory. All primers were synthesized by Operon Technologies, Alameda 

California. To confirm the specificity of the primers, each sequence was compared to 

240,449 known, published sequences in the GenEMBL data bank and were validated for 

the absence of any coincidental homology to other sequences. 

Agarose Gel Electrophoresis 

For analysis of PCR products, 5 !J.l of Gel loading buffer Type III70 (0.25% xylene 

cyanol FF, 0.25% bromophenol blue, 30% glycerol) was added to the reaction mixture, 

and the entire volume fractionated in a 1.5% agarose gel prepared with 45mM Tris-borate 

and lmM EDTA at 20 Vhr/cm. A DNA molecular weight standard was electrophoresed 

in the outermost lanes of the gel to resolve the size of the DNA product. The DNA was 

visualized by ethidium bromide staining using a variable intensity ultraviolet illuminator 

and photographed with a Polaroid camera. Ethidium bromide is a fluorescent dye that 

intercalates between stacked bases of DNA, arid causes the DNA to fluoresce when 

exposed to ultraviolet light of265 nanometer wavelength.39 Each microdissected, reverse 

transcribed and amplified tubule segment was scored as positive or negative for either �­

actin or PEPCK based on the presence or absence of the predicted PCR product of proper 

size visible on an agarose gel. 



www.manaraa.com

21 

PCR product enzyme digestion 

To confirm that the predominant PCR amplification products were actually the 

proper products, the PCR results were analyzed by restriction digestion analysis to 

demonstrate the precision of the PCR primers. The sequence of the predicted PCR 

amplification products for �-actin and PEPCK was created using the sequence editor 

function of the Wisconsin Package (v9.0) by the Genetics Computer Group (GCG). The 

expected PCR products were analyzed for the presence or absence of cleavage sites for 

restriction enzymes available in the laboratory using the restriction site-mapping program 

of GCG. The expected PCR products were also analyzed with the restriction enzyme site 

map-sorting program of GCG, to ascertain the predicted size of the cleavage products. 

Enzymes were selected to cut or not cut the expected PCR product into pieces easily 

identifiable on an agarose gel. Total mRNA extracted from rat kidney cortex (previously 

extracted and available in the laboratory) was reverse transcribed and amplified by PCR 

according to the conditions described earlier in this report. The PCR product was then 

electrophoresed on a low melting point agarose gel. A DNA molecular weight standard 

was electrophoresed in the outermost lanes of the gel to resolve the size of the PCR 

product. The DNA was visualized by ethidium bromide staining using a variable 

intensity ultraviolet illuminator, and the DNA band of expected size was removed from 

the gel using a sterile scalpel. The excised band was separated from the agarose using a 

QIAquick Gel Extraction kit according to the manufacturer's instructions. The purified 

DNA product was then incubated with a restriction enzyme and buffer supplied by the 

enzyme manufacturer. DNA, enzyme and enzyme buffer were incubated together 
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according to the manufacturer's directions. After digestion, 5J.Ll of Gel loading buffer 

Type III was added to the reaction mixture, and the entire volume fractionated in a 2% 

agarose gel prepared with 45mM Tris-borate and 1 mM EDT A and electrophoresed at 20 

Vhr/cm to analyze the digestion products. A DNA molecular weight standard was 

electrophoresed in the gel to resolve the size of the DNA product. The DNA was 

visualized by ethidium bromide staining using a variable intensity ultraviolet illuminator 

and photographed with a Polaroid camera. 

Statistics 

The number of observed P-actin positive tubules expressing or not expressing 

PEPCK mRNA in each identified proximal tubule segment from control and acidotic 

kidneys was compared using Chi-square analysis. The null hypothesis that the variables 

of a contingency table are independent of each other was rejected at the alpha level of P < 

0.05. When the null hypothesis is rejected (P < 0.05), then both variables are considered 

to be statistically dependent, and an experimental influence between the two variables 

can be contemplated. When the null hypothesis is not rejected, then both conditions can 

be considered independent of each other, and there is no indication of a relationship 

between the two categories. Both variables are then described as being statistically 

independent, and that one variable does not influence the other to any appreciable degree. 

Data manipulation and statistical analysis was performed using Microsoft Excel 

(v7.0). No attempt was made to quantitate the RT-PCR products, as the amount of 

starting material (total RNA) varied from tubule to tubule and was neither extracted nor 

quantitated, and the amount of mRNA degradation prior to reverse transcription was not 
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accounted for by an exogenous cRNA standard. Each examination of an individually 

dissected tubule was evaluated on a dichotomous positive/negative basis, depending on 

whether an ethidium bromide stained band of DNA was visible on an agarose gel. 
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Results 

Blood gas values from control and acidotic rats 

Blood gas data from control and acidotic Sprague Dawley rats are shown in Table 

2. Arterial blood was taken from a small sample of control and acidotic rats to determine 

acid-base status. Blood was drawn into a heparinized syringe from the abdominal aorta 

and analyzed in an automatic clinical blood gas analyzer. The rats used for blood gas 

analysis were not used for tubule dissection, and vice versa. The blood gas data for 

control and acidotic rats published in three reports is also shown in Table 2 for 

comparison, along with the method and duration used to establish acidotic conditions. 

The blood gas data for the present studies correlates well with the previously published 

data, and demonstrates that a significant acidosis was induced by gavage feeding of 20 

mmol/kg NH4Cl. No statistical analysis was performed with the present blood gas data, 

as the sample size is too small to make any statistical inferences 

PEPCK mRNA expression in tubules of control rats 

The number of segments expressing PEPCK mRNA as detected by RT-PCR in 

the proximal tubule of control rats is shown in Table 3. In these experiments, 2 

millimeter segments of the S 1, S2 and S3 proximal tubule from COntrol rats Were 

identified, isolated and collected. The tubule cells were permeabilized, and the mRNA 

population reverse transcribed using the enzyme MML V and oligo-dT as a downstream 

24 
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primer. A freeze-thaw procedure in the presence of an RNase inhibitor, as used in this 

report, has been shown to produce a proper RT-PCR product with as little as four cells, 

and was quite applicable for the successful reverse transcription of the tubular cell 

mRNA population.43 Transfer and successful reverse transcription to produce eDNA was 

confirmed first by obtaining a 698 base pair PCR amplification product visible on an 

ethidium bromide stained agarose gel using primers specific for �-actin. When the 

PEPCK or �-actin amplifications were carried out in the absence of target eDNA (water 

blank), no products were visible on the gel. 

In control rats, the number of tubules expressing PEPCK mRNA in S 1, S2 and S3 

segments of the rat proximal tubule was found to be statistically dependent by Chi-square 

contingency table analysis (P < 0.05). All statistical calculations for tubules from control 

rats can be found in Table 5. The null hypothesis that the expression of PEPCK mRNA 

is independent of proximal tubular location was rejected with a -l test statistic of 7.73 

and two degrees of freedom. The calculations in Table 5 (part A) indicate that there is a 

dependence on tubular location for PEPCK mRNA expression under control conditions. 

This statistical dependence suggested that there is a strong indication for a relationship 

between sub-segment location and PEPCK m.RNA expression under physiological 

conditions. 

To expose the relationship between tubule sub-segment location and expression of 

PEPCK mRNA during control conditions, the number of tubules expressing PEPCK 

mRNA in each sub-segment was weighed against the number of tubules expressing 

PEPCK mRNA in each of the other two proximal tubule sub-segments. These 
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calculations for control tubules are shown in Table 5 (parts B, C and D). These 

calculations demonstrate that the expression of PEPCK mRNA is more likely to occur in 

the S3 segment of the proximal tubule under control conditions, and less likely to occur in 

the S1 segment of the proximal tubule under control conditions. The S3 segment 

expresses PEPCK mRNA more readily than S1 or S2 segments under control conditions, 

and the S1 segment tends to express PEPCK mRNA less readily than S2 or S3 proximal 

tubule segments (P < 0.05). A statistical significance between the number of S2 tubules 

expressing PEPCK mRNA and S1 and S3 tubules expressing PEPCK mRNA cannot be 

demonstrated, and therefore does not show any indication of a relationship (P > 0.5). 

PEPCK mRNA expression in tubules of acidotic rats 

The number of �-actin positive segments expressing PEPCK mRNA as detected 

by RT-PCR in the proximal tubule of rats ten hours after gavage feeding of 20 mrnol/kg 

bodyweight is shown in Table 4. Acidotic proximal tubule isolation, collection, 

permeabilization and RT-PCR analysis was performed in the same manner as control 

proximal tubules. 

PEPCK mRNA expression across �-actin positive tubules collected from acidotic 

rats was not found to be dependent on tubular lo'cation by Chi-square analysis (P > 0.3). 

All statistical calculations for tubules from acidotic rats can be found in Table 6. The 

null hypothesis that the expression of PEPCK mRNA is independent of proximal tubular 

location
· 
was accepted with a x2 test statistic of 2.23 and two degrees of freedom. The 

calculations in Table 6 (part A) indicate that there is no dependence on tubular location 

for PEPCK mRNA expression under acidotic conditions (P > 0.3). These data reveal that 
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PEPCK mRNA expression appears balanced along the acidotic nephron. Parts B, C and 

D of Table 6 illustrate that when sub-segments were compared individually, no 

relationship can be elucidated. These data demonstrate that during metabolic acidosis, 

expression of PEPCK mRNA is independent of tubular location, and that there is no 

indication of a relationship between proximal tubular location and PEPCK mRNA 

expression during metabolic acidosis. 

PEPCK mRNA expression in proximal tubules of acidotic versus control rats 

The number of tubules expressing PEPCK mRNA in acidotic S1 proximal tubules 

was significantly greater than those expressing PEPCK mRNA in the S1 segments of 

control rats (P < 0.05). Statistical calculations for PEPCK mRNA expression in tubules 

of acidotic versus control rats can be found in Table 7. These calculations demonstrate 

that the increase in the number of S1 tubules expressing PEPCK mRNA is dependent on 

acid-base status, and increases significantly during metabolic acidosis (P < 0.05). These 

calculations also demonstrate that the increase in the number of s2 tubules expressing 

PEPCK mRNA is dependent on acid-base status, and increases significantly during 

metabolic acidosis (P < 0.05). The data do not indicate any relationship between the 

number of control and acidotic S3 tubules expressing PEPCK mRNA. The number of 

tubules in acidotic S3 proximal tubules was not significantly greater or lesser than those 

expressing PEPCK mRNA in the S3 segments of control rats (P > 0.4). Taken together, 

these data demonstrate that following ten hours of ammonium chloride induced acidosis, 

there is a significant increase in the number of S 1 and S2 tubules expressing PEPCK 

mRNA. 
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PCR product analysis 

In order to verify that the primers specific for �-actin had amplified the proper 

DNA sequence, the anticipated �-actin PCR product sequence was analyzed for 

restriction enzyme cleavage sites of restriction enzymes present in the laboratory using 

the computer site-mapping program of GCG. The results from the GCG restriction 

enzyme site analysis of the �-actin PCR product are shown in Figures 1 and 2. The PCR 

amplification product was incubated with each identified restriction enzyme according to 

the manufacturer's instructions and the digest fractionated on an ethidium bromide 

stained agarose gel. The results from the restriction enzyme digestion analysis of the �­

actin PCR product are shown in Figure 3. The enzyme Pvuii cut at one site, producing 

the predicted DNA fragments of235 and 463 base pairs in length. Fold had six cleavage 

sites and was predicted to produce seven DNA fragments. However, incomplete 

cleavage of some and/or preferential cleavage of other certain sites produced digestion 

products of unanticipated size. Bg!II and EcoRI did not have enzyme recognition sites 

and did not cut, as expected. 

In order to verify that the primers specific for PEPCK had amplified the proper 

DNA sequence, the expected PEPCK PCR product sequence was analyzed for restriction 

enzyme cleavage sites of restriction enzymes present in the laboratory using the computer 

site-mapping program of GCG. The results from the GCG restriction site analysis of the 

PEPCK PCR amplification product are shown in Figures 4 and 5. The PCR amplification 

product was incubated with each identified restriction enzyme according to the 

manufacturer's instructions and the digest fractionated on an ethidium bromide stained 
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agarose gel. The results of the restriction digest of the PEPCK RT-PCR product are 

shown in Figure 6. The enzyme EcoRI cut at one site and produced the predicted DNA 

fragments of 398 and 269 base pairs in length. Neither Hindiii nor Pvull had enzyme 

recognition sites therefore and did not cut, as anticipated. 
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Discussion 

The observations presented in this study further extend the details on the renal 

localization of PEPCK mRNA expression in the proximal tubule of the rat under control 

conditions and acute NH4Cl induced metabolic acidosis. Under physiological conditions, 

PEPCK mRNA expression along the nephron was found to be statistically dependent on 

segment location and was confined predominantly to the S3 segment of the proximal 

tubule of the rat nephron. PEPCK mRNA message could be detected in some S1 

segments of �-actin positive proximal tubules, but the number of S 1 segments expressing 

PEPCK mRNA was found to be significantly less than expected when compared to S2 

and S3. The conclusion that PEPCK mRNA expression under normal physiological 

conditions is localized to the S3 portion is consistent with data from Schoolwerth, et a!., 

who demonstrated by in situ hybridization that PEPCK mRNA message was confined 

primarily to the medullary rays of control kidneys.7
4 

The investigations by Schoolwerth, 

et a! suggested that the s3 segment of the proximal tubule predominantly expressed 

PEPCK mRNA under control conditions, as the present data substantiate. 

Ten hours following a single gavage feeding of 20 mmol NH4Cl/kg bodyweight, a 

significant increase in the number of S 1 and Sz segments of the proximal tubule of the rat 

expressing PEPCK mRNA was detected (P < 0.05). There was no significant detectable 

change in the number of S3 tubules expressing PEPCK mRNA in response to metabolic 

30 
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acidosis (P > 0.4). The number of S1 and S2 tubules expressing PEPCK mRNA in 

response to acidosis was almost twice that of control levels. These changes in PEPCK 

mRNA expression are also consistent with data of Schoolwerth, et al who demonstrated 

that PEPCK mRNA message reached a maximum distribution throughout the entire 

cortex of the rat kidney ten hours after NH4Cl administration. 74 The results of 

Schoolwerth, et al suggest that the S1 and S2 segments of the proximal tubule increase 

expression of PEPCK mRNA after ten hours of ammonium chloride induced acidosis, as 

the present data also demonstrate. 

The results presented here suggest that under physiological conditions, the S3 

segment of the rat nephron maintains a basal level of expression of PEPCK mRNA 

greater than that of the S1 and S2 segments. The S1 and S2 segments of the proximal 

tubule may contribute some, if only very little, of the PEPCK mRNA for enzyme 

synthesis. In response to an acid insult, however, cells of the S 1 and S2 proximal rat 

nephron not previously expressing PEPCK mRNA are recruited to express PEPCK 

mRNA. This provides evidence of a finely controlled mechanism along the proximal 

tubule of the rat that is sensitive to perturbations in acid-base balance. 

The present data also coincide with those of Burch, Brehe et al and Schmidt, 

Dubach and Guder, who demonstrated that PEPCK enzyme activity was localized to the 

proximal tubule of the rat and increased significantly in the cortex of acidotic rats when 

compared to control. 
1 s, 72 This increase was described as greatest in the proximal 

convoluted tubule and less in the proximal straight tubule, with no increase in the late 

portion of the proximal straight tubule. These findings correlate well with those of the 
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current study when "proximal convoluted tubule", "proximal straight tubule" and "late 

portion of the proximal straight tubule" are extrapolated to sl, s2 and s3 portions of the 

proximal tubule, respectively. The current studies demonstrate a significant increase in 

PEPCK rnRNA in the "proximal convoluted tubule" (S1) and in the "proximal straight 

tubule" (S2), with no significant increase in PEPCK mRNA in the "late portion of the 

proximal straight tubule" (S3) during acidosis when compared to control. This 

extrapolation may be a bit tenuous, as data by these investigators was contributed a 

decade or more before standardization of kidney ultrastructure.
49 

The significant increase in PEPCK mRNA expression m S1 and S2 proximal 

tubules suggests that cells not previously expressing PEPCK mRNA, and subsequently 

producing PEPCK enzyme protein, were induced to express PEPCK messenger RNA in 

response to metabolic acidosis. Other investigators have demonstrated an increase in 

PEPCK mRNA along a similarly acute timeline and with a relatively similar increase in 

expression. Pollock demonstrated by quantitative Northern analysis a three fold increase 

in renal PEPCK mRNA four hours after NH4Cl (10 mmol/kg) feeding.67 Iynedjian and 

Hanson utilized a cell-free wheat germ translational assay to determine that PEPCK 

mRNA increased three-fold six hours after gavage feeding of 10 mmol/kg NH4Cl.38 

Cimbala, et al revealed by Northern blotting with poly(At RNA that NH4Cl 

administration resulted in a four-fold increase in PEPCK mRNA within six hours.19 

Hwang and Curthoys employed nuclear run-on experiments to demonstrate that the 

mRNA for cytosolic PEPCK increased six-fold relative to �-actin approximately eight 

hours after feeding of 20 mmollkg NH4Cl.35 Iynedjian, Ballard and Hanson showed that 
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the rate of synthesis of renal PEPCK enzyme more than tripled between eight and thirteen 

hours after NH4Cl feeding.
37 The increase in the renal PEPCK response has been 

demonstrated to be due to an increase mediated at the level of PEPCK mRNA 

transcription.35•36•55 When present data are considered with data of these previous 

investigations, it can be surmised that the large increase in PEPCK mRNA detected in the 

kidney cortex is due to an increased amount of PEPCK mRNA transcribed by cells of the 

S1 and S2 proximal nephron. There probably exists, therefore, some sort of signaling 

pathway for cells· not previously expressing PEPCK to begin transcribing PEPCK 

mRNA. The nature of the signal that mediates this increase is not known and remains to 

be elucidated. 

The renal increase m PEPCK is primarily due to a disturbance of acid-base 

homeostasis. Renal PEPCK increases following an acid load, and this increase can be 

reversed with administration of sodium bicarbonate.36• 37 Although fasting has been 

demonstrated to cause an increase in renal PEPCK,37•55•67 this increase can also be 

reversed by sodium bicarbonate administration.37•55•60 Metabolic acidosis is considered to 

be the major factor which brings about an increase in renal gluconeogenesis during 

fasting. The increase in renal PEPCK during fasting is believed to be due purely to an 

acid-base disturbance (ketoacidosis) resulting from starvation.37•55 To this end, it was not 

deemed necessary to account for the possibility that the experimental animals may avoid 

food for the ten hours after NH4Cl administration. The effect of possible fasting would 

ultimately manifest itself as metabolic acidosis, the goal of the NH4Cl treatment. 

Administration of anesthetic can result in hypoventilation and possibly a concomitant 
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respiratory acidosis by experimental animals. Fourteen hours of respiratory acidosis has 

been shown to cause an increase in renal PEPCK activity in cortical slices.3 However, no 

difference in PEPCK mRNA expression in the kidneys of anesthetized rats compared to 

the kidneys of rats sacrificed by decapitation has been demonstrated.67 

In these studies, dissected tubules were assayed first for the presence of �-actin 

mRNA, which is the gene for the constitutive structural protein. �-actin was chosen as a 

"housekeeping" gene because its sequence in the rat has been well characterized, cloned 

and sequenced.62 The possibility exists that �-actin mRNA expression could be altered 

by NH4Cl administration and could therefore lead to erroneous results. However, other 

investigators have demonstrated that �-actin mRNA expression is not affected by 

administration of NH4Cl.35•36•56 Using oligo-dT as a downstream primer for reverse 

transcription, �-actin served as an excellent control marker to confirm transfer and 

permeabilization of tubule and successful reverse transcription of the poly(At-RNA 

population. The use of oligo-dT as a downstream primer created a eDNA copy of the 

entire mRNA population of the dissected tubule. This process was highly effective in 

determining which tubules could be used for PEPCK mRNA analysis. Without first 

determining that permeabilization and reverse transcription was successful, PEPCK 

mRNA analysis would have led to many false negatives, or scoring tubules as not 

expressing PEPCK mRNA, when in fact the mRNA had been degraded prior to RT-PCR 

analysis. This method of dissection and RT-PCR analysis could be expanded to assay 

many different mRNA populations along the rat proximal tubule. The only limitation for 
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this procedure would be the knowledge of the gene of interest, so that PCR primers could 

be properly designed. 

Moriyama, et al employed the dissection/RT-PCR amplification technique to 

examine aldose reductase mRNA expression in segments of the rat nephron. They 

reasoned that when this procedure did not identify aldose reductase mRNA in a dissected 

tubule, the gene was not expressed in this segment. They concluded that the RT-PCR of 

microdissected nephron segments provides a practical and sensitive means for 

determining gene expression in nephron segments. 57 

There exists intrinsic drawbacks of the reverse transcription and amplification 

systems that restricts the methods from being reliably quantitative. These drawbacks 

include, but are not limited to, degradation of mRNA template during the reverse 

transcription step, incomplete reverse transcription of the mRNA population and 

inconsistencies in the amplification of the eDNA product produced. A variable number 

of enzyme inhibitors can also be present, and can vary from tube to tube even among 

replicate samples. To this end, the amount of product obtained from a given sample 

following reverse transcription and a given number of PCR cycles cannot be assumed to 

be an accurate reflection of the amount of starting material. 64 Because of these 

drawbacks, each examination of individual dissected tubules in this report was scored on 

a dichotomous positive/negative basis, describing whether or not a band could be 

visualized on an agarose gel. Other investigators have demonstrated that the "practical 

detection threshold" for DNA on an agarose gel was 20 nanograms, although faint bands 

could be visualized at 10 nanograms?1 The use of ethidium bromide in an agarose gel as 
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a detection method has also been described as being limited to 5 nanograms or more of 

DNA.39 These visible quantities represent a tremendous amount of amplified DNA, and 

35 cycles of PCR was chosen to produce this result. This resulted in confirming that 

samples .were truly positive or negative for PEPCK mRNA expression, without having to 

make comparisons between faint and strong bands on an agarose gel. 
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Tables 

Table 1 

PCR primer oligonucleotide sequences, eDNA targets and base definitions for rat 

13-actin and rat phosphoenolpyruvate carboxy kinase. 

Rat 13-actin 3 (sense), bases62 
2168-2193 5'-CTGATCCACATCfGCrGGAAGTGG-3' 

Rat 13-actin 4 (antisense), bases62 
3078-3053 5'-ACCITCAACACCCCAGCCATGTACG-3' 

PEPCK-1 (antisense), bases7 
2139-2159 5'-TCCCTAGCCTGTTCTCTGTGC-3' 

PEPCK-4 (sense), bases7 
1493-1413 5'-GCAGCATGGGGTGTTTGTAGG-3' 
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Table 2 

Plasma bicarbonate and plasma pH values for control and acidotic rats from the 

present study and previous reports. Values are means ± SE of (n) rats, or when only two 
values are demonstrated, mean [actual values]. No statistical analysis was performed on 
these data. 

Current studies Control 26.65 [24.6, 28.7] 7.36 [7.31, 7.4] 2 

1 0 hours post 
20mmol/kg NH4Cl Acidotic 17.3 ± 6.2 mmol/L 7.22 ± 0.10 3 

feeding 

GAO Alleyne2 Control 24.2±0.4 mmol/L 7.39±0.01 19 

10 mmol/kg NH4Cl 
by stomach tube; 

Acidotic 16.5±0.3 mmol/L 7.23±0.01 22 
measured after 6 

hours 

Bennett and 
Control 23.9±0.5 mmol/L 7.37±0.01 13 

Alleyne9 

1mmol/kg NH4Cl at 
0800, 2000 and Acidotic 12.3±1.7 mmol/L 7.09±0.2 7 

0800; sac'ed at 1000. 

Mapes and 
Control 26.6±0.6 mmol/L 7.31±0.02 4 

Watford 5
4 

1.5% NH4Cl as 
drinking H20 for 6 Acidotic 17.7±2.3 mmol/L 7.21±0.05 4 

days 
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Table 3 

The number of segments expressing PEPCK mRNA as detected by RT-PCR in 
the proximal tubule of control rats. Each positive value represents a tubule that produced 
a PEPCK RT-PCR amplification product of predicted size visible on an agarose gel, after 

first producing a �-actin RT-PCR amplification product of predicted size visible on an 
agarose gel. Each negative value represents a tubule that did not produce visible PEPCK 

product, after first producing a visible �-actin amplification product. 

# of PEPCK positive samples 

# of PEPCK negative samples 

Total # of samples 

14 

20 

Table 4 

8 

14 

14 

5 

19 

The number of segments expressing PEPCK mRNA as detected by RT-PCR in 
the proximal tubule of acidotic rats, ten hours following administration of 20 mmol 
NH4Cl/kg bodyweight. Each positive value represents a tubule that produced a PEPCK 

RT-PCR amplification product of predicted size visible on an agarose gel, after first 

producing a �-actin RT-PCR amplification product of predicted size visible on an agarose 
gel. Each negative value represents a tubule that did not produce visible PEPCK product, 

after first producing a visible �-actin amplification product. 

# of PEPCK positive samples 

# of PEPCK negative samples 

Total# of samples 

15 

8 

23 

12 

3 

15 

12 

2 

14 



www.manaraa.com

49 

Table 5 

Chi-Square statistical test for independence. PEPCK mRNA expression within 
the proximal tubule of control rats. PEPCK mRNA expression within the proximal 
tubule of control rats was examined by comparing observed and expected values for S1, 
S2 and S3 proximal tubules. "P value" is the calculated probability associated with the 

chi-squared distribution when comparing the observed and expected values. " Calc x2" is 

the value of the chi-squared distribution for the statistic based on the calculated 
probability and degrees of freedom { df = (r-1 )( c-1)}. Tubules are categorized as "Yes" if 
PEPCK mRNA positive, and "No" if PEPCK mRNA negative. See Table 3 for further 
explanation. 

Observed Values 
Tubules Express PEPCK? 

Yes No 

§=ill 
26 27 

20 
14 
19 
53 

Observed Values 
Tubules Express PEPCK? 

Yes No 

:� I 
27 

20 
33 
53 

Observed Values 
Tubules Express PEPCK? 

Yes No 
14 
39 
53 

Observed Values 
Tubules Express PEPCK? 

Yes No 

s, � s2 1f-:-::�=--+--:cJ-=-2---t 
26 27 

19 
34 
53 

A 

P Value: 
Calc /: 

B 

P Value: 
Calc /: 

c 

P Value: 
Calc x2: 

D 

P Value: 
Calc /: 

0.031 
6.965 

0.589 
. 1.060 

Expected Values 
Tubules Express PEPCK? 

Yes No 
9.811 10.189 
6.868 7.132 
9.321 9.679 

26 27 
Expected Values 

Tubules Express PEPCK? 

s, 
s2 + s3 

Expected Values 
Tubules Express PEPCK? 

Yes 
s2 

s, + s3 

Expected Values 

Yes 

20 
14 
19 
53 

20 
33 
53 

14 
39 
53 

19 
34 
53 
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Table 6 

Chi-Square statistical test for independence. PEPCK mRNA expression within 
the proximal tubule of acidotic rats. PEPCK mRNA expression within the proximal 
tubule of acidotic rats was examined by comparing observed and expected values for S1, 
Sz and S3 proximal tubules. "P value" is the calculated probability associated with the 

chi-squared distribution when comparing the observed and expected values. "Calc l" is 
the value of the chi-squared distribution for the statistic based on the calculated 
probability and degrees of freedom { df = (r-1 )( c-1)}. Tubules are categorized as "Yes" if 
PEPCK mRNA positive, and "No" if PEPCK mRNA negative. See Table 4 for further 
explanation. 

Observed Values 

Tubules Express PEPCK? 

Yes No 

15 8 

12 3 

12 2 

39 13 

Observed Values 

Tubules Express PEPCK? 

Yes No 

s, 

I 
15 

I 
8 

I s2 + s3 24 5 

39 13 

Observed Values 

Tubules Express PEPCK? 

Yes No 

s2 

I 
12 

I 
3 

s, + s3 27 10 

39 13 

Observed Values 

23 

15 

14 

52 

23 

29 

52 

15 

37 

52 

Tubules Express PEPCK? 

Yes No 

s3 12 2 14 

s, + s2 27 II 38 

39 13 52 

P Value: 

Calc y2: 

P Value: 

Calc /: 

P Value: 

Calc y2: 

P Value: 

Calc y2: 

A 

0.328 

2.231 

B 

0.147 

3.837 

c 

0.596 

1.035 

D 

0.279 

2.555 

Expected Values 

Tubules Express PEPCK? 

Yes No 

17.25 5.75 

11.25 3.75 

10.5 3.5 

39 13 

Expected Values 

Tubules Express PEPCK? 

Yes 

s, 

s2 + s3 

Expected Values 

Tubules Express PEPCK? 

Yes 

s2 

s, + s3 

Expected Values 

23 

15 

14 

52 

23 

29 

52 

15 

37 

52 

Tubules Express PEPCK? 

Yes No 

s3 10.5 3.5 14 

s, + s2 28.5 9.5 38 

39 13 52 



www.manaraa.com

51 

Table 7 

Chi-Square statistical test for independence. PEPCK mRNA expression in 
control versus acidotic tubules. PEPCK mRNA expression in control versus acidotic 
tubules was examined by comparing observed and expected values for S1, S2 and S3 
proximal tubules from control and acidotic rats. The "P value" is the calculated 
probability associated with the chi-squared distribution when comparing the observed and 

expected values. " Calc x2" is the value of the chi-squared distribution for the statistic 
based on the calculated probability and one degree of freedom { (r-1 )( c-1) = 1}. Tubules 
are categorized as "Yes" if PEPCK mRNA positive, and "No" if PEPCK mRNA 
negative. See Tables 3 and 4 for further explanation. 

Observed Values S1 tubules Expected Values 

Tubules Express PEPCK? Tubules Express PEPCK? 

Yes No Yes No 

Control 

I 
6 

I 
14 

I 
20 P Value: 0.021 Control 9.767 10.23 20 

15 8 23 Calc 'i: 5.31 Acid 11.23 11.77 23 Acid 

21 22 43 21 22 43 

Observed Values s2 tubules Expected Values 

Tubules Express PEPCK? Tubules Express PEPCK? 

Yes No Yes No 

Control 

I 
6 

I 
8 14 P Value: 0.039 Control 8.69 5.31 14 

12 3 15 Calc ·l: 4.24 Acid 9.31 5.69 15 Acid 

18 11 29 18 11 29 

Observed Values s3 tubules Expected Values 

Tubules Express PEPCK? Tubules Express PEPCK? 

Yes No Yes No 

Control 14 5 19 P Value: 0.403 Control 14.97 4.03 19 

Acid 12 2 14 Calc x2: 0.698 Acid 11.03 2.97 14 

26 7 33 26 7 33 
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Figures 

Figure 1 

Restriction enzyme site analysis (MAP) of the predicted �-actin PCR 
amplification product, 698 base pairs in length. The sequence of the PCR product was 
analyzed using the computer site-mapping program of GCG for restriction enzymes 
Bglll, EcoRI, Pvull and Fokl, enzymes that were readily available in the laboratory. 

Restriction enzymes Fokl and Pvull have recognition sequences within the �-actin PCR 

product, and their predicted cleavage locations are indicated. The restriction enzymes 
Bglll and EcoRI do not have recognition cleavage sites. 



www.manaraa.com

(Linear) MAP of: bactinpcr.seq check: 6231 from: 1 to: 698 
LOCUS 698 bp DNA ROD 04-AUG-1986 

DEfiNITION Rat cytoplasmic beta-actin PCR product 
ACCESSION J00691 

NID g202653 

KEYWORDS actin; beta-actin; beta-cytoplasmic actin. 
SOURCE Rat gene library, clones pAc(-Rl,-18.1,-4.1] from bacteriophage Act 
With 4 enzymes: BGLII ECORI PVUII FOKI 

June 16, 1996 16:39 
Foki 

I 
ACCTTCAACACCCCAGCCATGTACGTAGCCATCCAGGCTGTGTTGTCCCTGTATGCCTCT 
---------+---------+---------+---------+---------+---------+ 60 

TGGAAGTTGTGGGGTCGGTACATGCATCGGTAGGTCCGACACAACAGGGACATACGGAGA 

GGTCGTACCACTGGCATTGTGATGGACTCCGGAGACGGGGTCACCCACACTGTGCCCATC 
61 ---------+---------+---------+ ---------+---------+---------+ 120 

CCAGCATGGTGACCGTAACACTACCTGAGGCCTCTGCCCCAGTGGGTGTGACACGGGTAG 

Foki 

I 
TATGAGGGTTACGCGCTCCCTCATGCCATCCTGCGTCTGGACCTGGCTGGCCGGGACCTG 

121 -------- -+---------+---------+---------+ ---------+---------+ 180 

ATACTCCCAATGCGCGAGGGAGTACGGTAGGACGCAGACCTGGACCGACCGGCCCTGGAC 

Pvuii 
I 

ACAGACTACCTCATGAAGATCCTGACCGAGCGTGGCTACAGCTTCACCACCACAGCTGAG 
181 ---------+ ---------+---------+---------+---------+ ---------+ 2 4 0 

TGTCTGATGGAGTACTTCTAGGACTGGCTCGCACCGATGTCGAAGTGGTGGTGTCGACTC 

AGGGAAATCGTGCGTGACATTAAAGAGAAGCTGTGCTATGTTGCCCTAGACTTCGAGCAA 
241 ---------+---------+---------+---------+---------+---------+ 300 

TCCCTTTAGCACGCACTGTAATTTCTCTTCGACACGATACAACGGGATCTGAAGCTCGTT 

Foki 
I 

GAGATGGCCACTGCCGCATCCTCTTCCTCCCTGGAGAAGAGCTATGAGCTGCCTGACGGT 
301 ---------+---------+ ---------+ ---------+---------+---------+ 3 60 

CTCTACCGGTGACGGCGTAGGAGAAGGAGGGACCTCTTCTCGATACTCGACGGACTGCCA 

CAGGTCATCACTATCGGCAATGAGCGGTTCCGATGCCCCGAGGCTCTCTTCCAGCCTTCC 
3 61 ---------+---------+---------+---------+---------+---------+ 4 20 

GTCCAGTAGTGATAGCCGTTACTCGCCAAGGCTACGGGGCTCCGAGAGAAGGTCGGAAGG 

Foki Foki 
I I 

TTCCTGGGTATGGAATCCTGTGGCATCCATGAAACTACATTCAATTCCATCATGAAGTGT 
4 21 ---------+---------+---------+---------+---------+---------+ 4 80 

AAGGACCCATACCTTAGGACACCGTAGGTACTTTGATGTAAGTTAAGGTAGTACTTCACA 

GACGTTGACATCCGTAAAGACCTCTATGCCAACACAGTGCTGTCTGGTGGCACCACCATG 
4 81 ---------+---------+---------+---------+---------+---------+ 54 0 

CTGCAACTGTAGGCATTTCTGGAGATACGGTTGTGTCACGACAGACCACCGTGGTGGTAC 

Foki 
I 

TACCCAGGCATCGCTGACAGGATGCAGAAGGAGATTACTGCCCTGGCTCCTAGCACCATG 
541 ---------+---------+---------+---------+---------+---------+ 600 

ATGGGTCCGTAGCGACTGTCCTACGTCTTCCTCTAATGACGGGACCGAGGATCGTGGTAC 

AAGATCAAGATCATTGCTCCTCCTGAGCGCAAGTACTCTGTGTGGATTGGTGGCTCTATC 
601 ---------+ ---------+---------+---------+---------+---------+ 660 

TTCTAGTTCTAGTAACGAGGAGGACTCGCGTTCATGAGACACACCTAACCACCGAGATAG 

CTGGCCTCACTGTCCACCTTCCAGCAGATGTGGATCAG 
661 ---------+---------+---------+-------- 698 

GACCGGAGTGACAGGTGGAAGGTCGTCTACACCTAGTC 

En:z.ymes that do cut: 
Foki Pvuii 

En:z.ymes that do not cut: 
Bgl I I EcoRI 

Figure 1 
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(Linear) MAPSORT of: bactinpcr.seq Check: 6231 from: 1 to: 698 

698 bp DNA 

Rat cytoplasmic 

J00691 

g202653 

ROD 04-AUG-1986 

beta-actin PCR product 

actin; beta-actin; beta-cytoplasmic actin. 

54 

LOCUS 

DEFINITION 

ACCESSION 

NID 

KEYWORDS 

SOURCE Rat gene library, clones pAc[-Rl,-18.1,-4.1] from 
bacteriophage Act 

With 4 enzymes: FOKI PVUII BGLII ECORI 

July 2, 1996 14:54 

Foki GGATGnnnnnnnnn'nnnn 

Cuts at: 0* 16 133 303 430 475 573 698 

Size: 16 117 170 127 45 98 125 

Fragments arranged by size: 

170 127 125 117 98 45 16 

Pvuii CAG'CTG 

Cuts at: 0* 235 698 

Size: 235 4 63 

Enzymes that do cut: 

Foki Pvuii 

Enzymes that do not cut: 

Bglii EcoRI 

Figure 2 

Restriction enzyme product prediction (MAPSORT) for �-actin PCR product 
digested with restriction enzymes Bglll, EcoRI, Pvull and Foki. Foki enzyme digestion 
is predicted to produce seven fragments of various lengths between 16 and 170 base 
pairs. Pvull enzyme digestion is predicted to produce two DNA digestion products, 235 
and 463 base pairs in length. Restriction enzymes Bglii and EcoRI do not have 

recognition sequences within the �-actin PCR product and are not predicted to cut. 
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Figure 3 

Ethidium bromide stained agarose gel of the restriction enzyme digest of the 13-
actin PCR product with restriction enzymes Bgiii, EcoRI, Pvull and Fokl. Lane 1: Bgiii 
buffer and enzyme; no digestion product produced. Lane 2: EcoRI enzyme and buffer; 
no digestion product produced. Lane 3: Pvull enzyme buffer with no enzyme; no 

digestion product produced. Lane 4: Fokl buffer and enzyme; incomplete digestion of 13-
actin PCR product visible. Lane 5: Pvull buffer and enzyme; 698 (uncut), 235 and 463 
(cut) base pair DNA enzyme digestion products visible. Lane 6: 100 base pair DNA 

standard. 
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Figure 4 

Restriction enzyme site analysis (MAP) of the predicted PEPCK PCR 
amplification product, 667 base pairs in length. The sequence of the PCR product was 
analyzed using the computer site-mapping program of GCG for restriction enzymes 
EcoRI, Hindiii and Pvull, enzymes, which were readily available in the laboratory. 
Restriction enzyme EcoRI contains a recognition sequence within the PEPCK PCR 
product, while restriction enzymes Hindiii and Pvull do not. The cleavage site for EcoRI 
is illustrated. 
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(Linear) MAP of: pepckpcr.seq check: 8851 

ROD 

from: 1 to: 667 

04-AUG-1986 LOCUS 667 bp DNA 

DEFINITION Rat phosphoenolpyruvate carboxykinase PCR product. 
ACCESSION K03248 

NID g206065 

KEYWORDS phosphoenolpyruvate carboxykinase. 

With 4 enzymes: ECORI HINDIII PVUII 

April 19, 1996 15:17 

GCAGCATGGGGTGTTTGTAGGAGCCGCCATGAGATCAGAGGCCACCGCTGCTGCAGAGCA 
---------+---------+---------+---------+---------+---------+ 60 

CGTCGTACCCCACAAACATCCTCGGCGGTACTCTAGTCTCCGGTGGCGACGACGTCTCGT 

TAAGGGCAAGGTCATCATGCACGACCCCTTCGCTATGCGGCCCTTCTTTGGCTACAACTT 
61 ---------+---------+---------+---------+---------+---------+ 120 

ATTCCCGTTCCAGTAGTACGTGCTGGGGAAGCGATACGCCGGGAAGAAACCGATGTTGAA 

CGGCAAGTACCTGGCGCACTGGCTGAGCATGGCCCACCGCCCAGCAGCCAAGTTGCCCAA 
121 ---------+---------+---------+---------+---------+---------+ 180 

GCCGTTCATGGACCGCGTGACCGACTCGTACCGGGTGGCGGGTCGTCGGTTCAACGGGTT 

GATCTTCCACGTCAACTGGTTCCGGAAAGACAAAAACGGCAAGTTCCTCTGGCCCGGATT 
181 ---------+---------+---------+---------+---------+---------+ 240 

CTAGAAGGTGCAGTTGACCAAGGCCTTTCTGTTTTTGCCGTTCAAGGAGACCGGGCCTAA 

TGGTGAGAACTCCCGCGTGCTGGAGTGGATGTTCGGACGCATCGAAGGGGAAGACAGCGC 
241 ---------+---------+---------+---------+---------+---------+ 300 

ACCACTCTTGAGGGCGCACGACCTCACCTACAAGCCTGCGTAGCTTCCCCTTCTGTCGCG 

CAAGCTCACTCCCATTGGCTACGTCCCTAAGGAAGACGCCCTGAACTTGAAAGGCCTGGG 
301 ---------+---------+---------+---------+---------+---------+ 360 

GTTCGAGTGAGGGTAACCGATGCAGGGATTCCTTCTGCGGGACTTGAACTTTCCGGACCC 

EcoRI 
I 

GGACGTCAACGTGGAGGAGCTGTTCGGAATCTCTAAGGAATTCTGGGAGAAGGAGGTGGA 
361 ---------+---------+---------+---------+---------+---------+ 420 

CCTGCAGTTGCACCTCCTCGACAAGCCTTAGAGATTCCTTAAGACCCTCTTCCTCCACCT 

GGAGATCGACAAGTATCTGGAGGACCAGGTCAACGCCGACCTCCCTTACGAAATAGAGAG 
421 ---------+---------+---------+---------+---------+---------+ 480 

CCTCTAGCTGTTCATAGACCTCCTGGTCCAGTTGCGGCTGGAGGGAATGCTTTATCTCTC 

GGAGCTCCGAGCCCTGAAACAGAGAATCAGCCAGATGTAATCCCGATGGGGGGTGTCCTT 
481 ---------+---------+---------+---------+---------+---------+ 540 

CCTCGAGGCTCGGGACTTTGTCTCTTAGTCGGTCTACATTAGGGCTACCCCCCACAGGAA 

GAGAGTCGCCCCTTCCCGCTCACGGCACACGTTGGGAGCTAGGAGCAAACCAGCAAGCAC 
541 ---------+---------+---------+---------+---------+---------+ 600 

CTCTCAGCGGGGAAGGGCGAGTGCCGTGTGCAACCCTCGATCCTCGTTTGGTCGTTCGTG 

AATGCTGAGTAGATCAGAAAAGCACCTTTTAATAGTCAGTTGAGTAGCACAGAGAACAGG 
601 ---------+---------+---------+---------+---------+---------+ 660 

TTACGACTCATCTAGTCTTTTCGTGGAAAATTATCAGTCAACTCATCGTGTCTCTTGTCC 

CTAGGGA 
661 667 

GATCCCT 

Enzymes that do cut: 

EcoRI 

Enzymes that do not cut: 

Hindi II Pvui I 

Figure 4 
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(Linear) MAPSORT of: pepckpcr.seq Check: 8851 from: 1 to: 667 

LOCUS 667 bp DNA ROD 04-AUG-1986 

DEFINITION Rat phosphoenolpyruvate carboxykinase PCR product. 

ACCESSION K03248 

NID g206065 

KEYWORDS phosphoenolpyruvate carboxykinase. 

SEGMENT 6 of 6 . . 

With 3 enzymes: ECORI HINDIII PVUII 

July 2, 1996 14:53 

EcoRI G'AATT C 

Cuts at: 

Size: 

0* 398 667 

398 269 

Enzymes that do cut: 

EcoRI 

Enzymes that do not cut: 

Hindiii Pvuii 

Figure 5 
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Restriction enzyme product prediction (MAPSORT) for PEPCK PCR product 

digested with restriction enzymes EcoRI, Hindiii and Pvull. EcoRI enzyme digestion is 

predicted to produce two DNA digestion products, 269 and 398 base pairs in length. 
Hindiii and Pvull restriction enzymes do not have recognition sequences within the 

PEPCK PCR product and are not predicted to cut. 
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Figure 6 

500 bp 

400 bp 

300 bp 
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Ethidium bromide stained agarose gel of the restriction enzyme digest of the 
PEPCK PCR product with restriction enzymes EcoRI, Hindiii and Pvuii. Lane 1: 

PEPCK PCR product and Pvuii enzyme; no digestion product produced. Bgiii buffer 
and enzyme with buffer; no digestion product produced. Lane 2: PEPCK PCR product 
and Hindiii enzyme with buffer; no digestion product produced. Lane 3: PEPCK PCR 
product and EcoRI enzyme with buffer; 667 (.uncut), 269 and 398 (cut) base pair DNA 

enzyme digestion products visible. Lane 4: blank. Lane 5: 100 base pair DNA standard. 
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